
IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

31 www.ijdcst.com

Assuring Integrity of Scalable Distributed Services

for Software-as-a-Service Clouds
Vijay Chand Medapati1, Trivikram Rao2

1M.Tech (CSE), Usha Rama College of Engineering and Technology, A.P., India.
2Asst Professor, Dept. of Information Technology, Usha Rama College of Engineering and Technology, A.P., India.

Abstract — Among the Services provided by the cloud.

Software as a Service (SaaS) is a software distribution

model in which applications are hosted by a vendor or

service provider and made available to customers over

a network, typically the Interne. However, due to their

sharing nature, SaaS clouds are vulnerable to

malicious attacks SaaS cloud systems enable

application service providers to deliver their

applications via massive cloud computing

infrastructures. In this paper, we present IntTest, a

scalable and effective service integrity attestation

framework for SaaS clouds. IntTest provides a novel

integrated attestation graph analysis scheme that can

provide stronger attacker pinpointing power than

previous schemes. Moreover, IntTest can

automatically enhance result quality by replacing bad

results produced by malicious attackers with good

results produced by benign service providers. We have

implemented a prototype of the IntTest system and

tested it on a production cloud computing

infrastructure using IBM System S stream processing

applications. Our experimental results show that

IntTest can achieve higher attacker pinpointing

accuracy than existing approaches. IntTest does not

require any special hardware or secure kernel support

and imposes little performance impact to the

application, which makes it practical for large-scale

cloud systems.

Keywords — Distributed service integrity attestation,

cloud computing, secure distributed data processing

I. INTRODUCTION

The concept of cloud computing enables you to run

computer applications over the Internet, eliminating

the need to buy, install or manage your own servers.

You can simply run your company's IT operations

with just a browser and an Internet connection .Cloud

computing has emerged as a cost-effective resource

leasing paradigm, which obviates the need for users

maintain complex physical computing infrastructures

by themselves. Software-as-a-service (SaaS) clouds

(e.g., Amazon Web Service (AWS) [1] and Google

AppEngine [2]) build upon the concepts of software as

a service [3] and service-oriented architecture (SOA)

[4], [5], which enable application service providers

(ASPs) to deliver their applications via the massive

cloud computing infrastructure. In particular, our work

focuses on data stream processing services [6], [7], [8]

that are considered to be one class of killer

applications for clouds with many real-world

applications in security surveillance, scientific

computing, and business intelligence. However, cloud

computing infrastructures are often shared by ASPs

from different security domains, which make them

vulnerable to malicious attacks [9], [10]. For example,

attackers can pretend to be legitimate service

providers to provide fake service components, and the

service components provided by benign service

providers may include security holes that can be

exploited by attackers. Our work focuses on service

integrity attacks that cause the user to receive

untruthful data processing results, illustrated by Fig. 1.

Although confidentiality and privacy protection

problems have been extensively studied by previous

research [11], [12], [13], [14], [15], [16], the service

integrity attestation problem has not been properly

addressed. Moreover, service integrity is the most

prevalent problem, which needs to be addressed no

matter whether public or private data are processed by

the cloud system. Although previous work has

provided various software integrity attestation

solutions [9], [10], [11],[12], those techniques often

require special trusted hardware or secure kernel

support, which makes them difficult to be deployed on

large-scale cloud computing infrastructures.

Traditional Byzantine fault tolerance (BFT)

techniques [14], [15] can detect arbitrary misbehaviors

using full-time majority voting (FTMV) over all

replicas, which however incur high overhead to the

cloud system.

In this paper, we present IntTest, a new integrated

service integrity attestation framework for multitenant

cloud systems. IntTest provides a practical service

integrity attestation scheme that does not assume

IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

32 www.ijdcst.com

trusted entities on third-party service provisioning

sites or require application modifications. IntTest

builds upon our previous work RunTest [16] and

AdapTest [7] but can provide stronger malicious

attacker pinpointing power than RunTest and

AdapTest. Specifically, RunText and AdapTest as

well as traditional majority voting schemes need to

assume that benign service providers take majority in

every service function. However, in large-scale

multitenant cloud systems, multiple malicious

attackers may launch colluding attacks on certain

targeted service functions to invalidate the

assumption. To address the challenge, IntTest takes

aholistic approach by systematically examining both

consistency and inconsistency relationships among

different service providers within the entire cloud

system.

Fig. 1. Service integrity attack in cloud-based data

processing. Si

denotes different service component and VM

denotes virtual machines

The per-function consistency raph analysis can limit

the scope of damage caused by colluding attackers,

while the global inconsistency graph analysis can

effectively expose those attackers that try to

compromise many service functions. Hence, IntTest

can still pinpoint malicious attackers even if they

become majority for some service functions. By

taking an integrated approach, IntTest can not only

pinpoint attackers more efficiently but also can

suppress aggressive attackers and limit the scope of

the damage caused by colluding attacks. Moreover,

IntTest provides result auto correction that can

automatically replace corrupted data processing results

produced by malicious attackers with good results

produced by benign service providers. Specifically,

this paper makes the following contributions:

 We provide a scalable and efficient distributed

service integrity attestation framework for large

scale cloud computing infrastructures.

 We present a novel integrated service integrity

attestation scheme that can achieve higher

pinpointing accuracy than previous techniques.

 We describe a result auto correction technique

that can automatically correct the corrupted

results produced by malicious attackers.

 We conduct both analytical study and

experimental evaluation to quantify the accuracy

and overhead of the integrated service integrity

attestation scheme.

We have implemented a prototype of the IntTest

system and tested it on NCSU’s virtual computing lab

(VCL) [8], a production cloud computing

infrastructure that operates in a similar way as the

Amazon elastic compute cloud (EC2) [9]. The

benchmark applications we use to evaluate IntTest are

distributed data stream processing services provided

by the IBM System S stream processing platform [8],

[3], an industry strength data stream processing

system. Experimental results show that IntTest can

achieve more accurate pinpointing than existing

schemes (e.g., RunTest, AdapTest, and full-time

majority voting) under strategically colluding attacks.

IntTest is scalable and can reduce the attestation

overhead by more than one order of magnitude

compared to thetraditional full-time majority voting

scheme.

II. PROBLEM STATEMENT

Given a SaaS cloud system, the goal of IntTest is to

pinpoint any malicious service provider that offers an

untruthful service function. IntTest treats all service

components as black boxes, which does not require

any special hardware or secure kernel support on the

IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

33 www.ijdcst.com

cloud platform. We now describe our attack model

and our key assumptions as follows:

Attack model. A malicious attacker can pretend to be

a legitimate service provider or take control of

vulnerable service providers to provide untruthful

service functions. Malicious attackers can be stealthy,

which means they can misbehave on a selective subset

of input data or service functions while pretending to

be benign service providers on other input data or

functions. The stealthy behavior makes detection more

challenging due to the following reasons:

 The detection scheme needs to be hidden from the

attackers to prevent attackers from gaining

knowledge on the set of data processing results

that will be verified and therefore easily escaping

detection; and

 The detection scheme needs to be scalable while

being able to capture misbehavior that may be

both unpredictable and occasional.

In a large-scale cloud system, we need to consider

colluding attack scenarios where multiple malicious

attackers collude or multiple service sites are

simultaneously compromised and controlled by a

single malicious attacker. Attackers could sporadically

collude, which means an attacker can collude with an

arbitrary subset of its colluders at any time. We

assume that malicious nodes have no knowledge of

other nodes except those they interact with directly.

However, attackers can communicate with their

colluders in an arbitrary way. Attackers can also

change their attacking and colluding strategies

arbitrarily. Assumptions we first assume that the total

number of malicious service components is less than

the total number of benign ones in the entire cloud

system. Without this assumption, it would be very

hard, if not totally impossible, for any attack detection

scheme to work when comparable ground truth

processing results are not available.

Fig.2. Replay-based consistency check.

However, different from RunTest, AdapTest, or any

previous majority voting schemes, IntTest does not

assume benign service components have to be the

majority for every service function, which will greatly

enhance our pinpointing power and limit the scope of

service functions that can be compromised by

malicious attackers. Second, we assume that the data

processing services are input-deterministic, that is,

given the same input, a benign service component

always produces the same or similar output (based on

a user-defined similarity function). Many data stream

processing functions fall into this category [8]. We can

also easily extend our attestation framework to support

stateful data processing services [8], which however is

outside the scope of this paper. Third, we also assume

that the result inconsistency caused by hardware or

software faults can be marked by fault detection

schemes [3] and are excluded from our malicious

attack detection.

III. RELATED WORK

To detect service integrity attack and pinpoint

malicious service providers, our algorithm relies on

replay-based consistency check to derive the

consistency/inconsistency relationships between

service providers. For example, Fig. 2 shows the

consistency check scheme for attesting three service

provider’s p1, p 2, and p 3 that offer the same service

function f. The portal sends the original input data d1

to p1 and gets back the result f(d1). Next, the portal

sends d0, a duplicate of d1 to p3 and gets back the

result f(d0).

The portal then compares f(d1) and f(d0) to see

whether p1 and p3 are consistent. The intuition behind

our approach is that if two service providers disagree

with each other on the processing result of the same

input, at least one of them should be malicious. Note

that we do not send an input data item and its

duplicates (i.e., attestation data) concurrently. Instead,

we replay the attestation data on different service

providers after receiving the processing result of the

original data. Thus, the malicious attackers cannot

avoid the risk of being detected when they produce

false results on the original data. Although the replay

scheme may cause delay in a single tuple processing,

we can overlap the attestation and normal processing

of consecutive tuples in the data stream to hide the

attestation delay from the user. If two service

providers always give consistent output results on all

input data, there exists consistency relationship

between them. Otherwise, if they give different

outputs on at least one input data, there is

inconsistency relationship between them. We do not

limit the consistency relationship to equality function

since two benign service providers may produce

IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

34 www.ijdcst.com

similar but not exactly the same results. For example,

the credit scores for the same person may vary by a

small difference when obtained from different credit

bureaus. We allow the user to define a distance

function to quantify the biggest tolerable result

difference.

Definition 1. For two output results, r1 and r2, which

come from two functionally equivalent service

providers, respectively, result consistency is defined

as either r1 = r2, or the distance between r1 and r2

according to user-defined distance function D(r1,r2)

falls within a threshold ɗ.

For scalability, we propose randomized probabilistic

attestation, an attestation technique that randomly

replays a subset of input data for attestation. For

composite data-flow processing services consisting of

multiple service hops, each service hop is composed

of a set of unction ally equivalent service providers.

Specifically, for an upcoming tuple di, the portal may

decide to perform integrity attestation with probability

pu. If the portal decides to perform attestation on di,

the portal first sends di to a pre-defined service path p1

‒–›p2 • • • • –––› pl providing functions f1 ‒–› f2• • • •–

–› fl. After receiving the processing result for di, the

portal replays the duplicates of di, on alternative

service path(s) such as ṕ1‒–› ṕ2• • • • • ––› ṕj providing

functions fj as ṕj. The portal may perform data replay

on multiple service providers to perform concurrent

attestation.

Fig. 3. Attestation graphs.

With replay-based consistency check, we can test

functionally equivalent service providers and obtain

their consistency and inconsistency relationships.

Fig.3. Attestation graphs both the we employ

consistency graph and inconsistency graph to

aggregate pairwise attestation results for further

analysis. The graphs reflect the

consistency/inconsistency relationships across

multiple service providers over a period of time.

Before introducing the attestation graphs, we first

define consistency links and inconsistency links.

Definition 2. A consistency link exists between two

service providers who always give consistent output

for the same input data during attestation. An

inconsistency link exists between two service

providers who give at least one inconsistent output for

the same input data during attestation.

We then construct consistency graphs for each

function to capture consistency relationships among

the service providers provisioning the same function.

Fig 3 (a) shows the consistency graphs for two

functions. Note that two service providers that are

consistent for one function are not necessarily

consistent for another function. This is the reason why

we confine consistency graphs within individual

functions.

Definition 3. A per-function consistency graph is an

undirected graph, with all the attested service

providers that provide the same service function as the

vertices and consistency links as the edges.

We use a global inconsistency graph to capture

inconsistency relationships among all service

providers. Two service providers are said to be

inconsistent as long as they disagree in any function.

Thus, we can derive more comprehensive

inconsistency relationships by integrating

inconsistency links across functions. Fig. 3(b) shows

an example of the global inconsistency graph. Note

that service provider p5 provides both functions f1 and

f2. In the inconsistency graph, there is a single node

p5 with its links reflecting inconsistency relationships

in both functions f1 and f2.

Definition 4. The global inconsistency graph is an

undirected graph, with all the attested service

providers in the system as the vertex set and

inconsistency links as the edges. The portal node is

responsible for constructing and maintaining both per-

function consistency graphs and the global

inconsistency graph. To generate these graphs, the

portal maintains counters for the number of

consistency results and counters for the total number

of attestation data between each pair of service

providers.

IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

35 www.ijdcst.com

IV. RESULTS AND ANALYSIS

We first investigate the accuracy of our scheme in

pinpointing malicious service providers. Fig. 4(a)

compares our scheme with the other alternative

schemes (i.e., FTMV, PTMV, and RunTest) when

malicious service providers aggressively attack

different number of service functions. Inthis set of

experiments, we have 10 service functions and 30

service providers. The number of service providers in

each service function randomly ranges in [1, 8].

Fig 4.Malicious attackers pinpointing accuracy

comparison with 20 percent service providers being

malicious.

Each benign service provider provides two randomly

selected service functions. The data rate of the input

stream is 300 tuples per second. We set 20 percent of

service providers as malicious. After the portal

receives the processing result of a new data tuple, it

randomly decides whether to perform data attestation.

Each tuple has 0.2 probability of getting attested (i.e.,

attestation probability Pu ¼ 0:2), and two attestation

data replicas are used (i.e., number of total data copies

including the original data r ¼ 3). Each experiment is

repeated three times. We report the average detection

rate and false alarm rate achieved by different

schemes. Note that RunTest can achieve the same

detection accuracy results as the majority voting based

schemes after the randomized probabilistic attestation

covers all attested service providers and discovers the

majority clique [6]. In contrast, IntTest

comprehensively examines both perfection

consistency graphs and the global inconsistency graph

to make the final pinpointing decision. We observe

that IntTest can achieve much higher detection rate

and lower false alarm rate than other alternatives.

Moreover, IntTest can achieve better detection

accuracy when malicious service providers attack

more functions. We also observe that when malicious

service providers attack aggressively, our scheme can

detect them even though they attack a low percentage

of service functions Fig. 4(b) shows the malicious

service provider detection accuracy results under the

conservative attack scenarios. All the other experiment

parameters are kept the same as the previous

experiments. The results show that IntTest can

consistently achieve higher detection rate and lower

false alarm rate than the other alternatives. In the

conservative attack scenario, as shown by fig. 4(b), the

false alarm rate of IntTest first increases when a small

percentage of service functions are attacked and then

drops to zero quickly with more service functions are

attacked. This is because when attackers only attack a

few service functions where they can take majority;

they can hide themselves from our detection scheme

while tricking our algorithm into labeling benign

service providers as malicious. However, if they attack

more service functions, they can be detected since

they incur more inconsistency links with benign

service providers in the global inconsistency graph.

Note that majority voting-based schemes can also

detect malicious attackers if attackers fail to take

majority in the attacked service function. However,

majority voting-based schemes have high false alarms

since attacks can always trick the schemes to label

benign service providers as malicious as long as

attackers can take majority in each individual service

function

V. CONCLUSION

In this paper, we have presented the design and

implementation of IntTest, a novel integrated service

integrity attestation framework for multitenant

software-as-a-service cloud systems. IntTest employs

randomized replay-based consistency check to verify

the integrity of distributed service components without

imposing high overhead to the cloud infrastructure.

IntTest performs integrated analysis over both

consistency and inconsistency attestation graphs to

pinpoint colluding attackers more efficiently than

existing techniques. Furthermore, IntTest provides

result autocorrect ion to automatically correct

compromised results to improve the result quality. We

have implemented IntTest and tested it on a

commercial data stream processing platform running

inside a production virtualized cloud computing

infrastructure. Our experimental results show that

IntTest can achieve higher pinpointing accuracy than

existing alternative schemes. IntTest is lightweight,

which imposes low-performance impact to the data

IJDCST @Dec-2015, Issue- V-3, I-8, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

36 www.ijdcst.com

processing services running inside the cloud

computing infrastructure.

REFERENCES

[1] Amazon Web Services, http://aws.amazon.com/,

2013.

[2] Google App Engine,

http://code.google.com/appengine/, 2013.

[3] Software as a Service,

http://en.wikipedia.org/wiki/Software as a Service,

2013.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,

Web Services Concepts, Architectures and

Applications (Data-Centric Systems and

Applications). Addison-Wesley Professional, 2002.

[5] T. Erl, Service-Oriented Architecture (SOA):

Concepts, Technology, and Design. Prentice Hall,

2005.

[6] T.S. Group, “STREAM: The Stanford Stream Data

Manager,” IEEE Data Eng. Bull., vol. 26, no. 1, pp.

19-26, Mar. 2003.

[7] D.J. Abadi et al., “The Design of the Borealis

Stream Processing Engine,” Proc. Second Biennial

Conf. Innovative Data Systems Research (CIDR ’05),

2005.

[8] B. Gedik et al., “SPADE: The System S

Declarative Stream Processing Engine,” Proc. ACM

SIGMOD Int’l Conf. Management Of Data

(SIGMOD ’08), Apr. 2008.

[9] S. Berger et al., “TVDc: Managing Security in the

Trusted Virtual Datacenter,” ACM SIGOPS Operating

Systems Rev., vol. 42, no. 1, pp. 40-47, 2008.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S.

Savage, “Hey, You Get Off My Cloud! Exploring

Information Leakage in Third-Party Compute

Clouds,” Proc. 16th ACM Conf. Computer and

Communications Security (CCS), 2009.

[11] W. Xu, V.N. Venkatakrishnan, R. Sekar, and I.V.

Ramakrishnan,“A Framework for Building Privacy-

Conscious Composite Web Services,” Proc. IEEE Int’l

Conf. Web Services, pp. 655-662, Sept. 2006.

[12] P.C.K. Hung, E. Ferrari, and B. Carminati,

“Towards Standardized Web Services Privacy

Technologies,” IEEE Int’l Conf. Web Services, pp.

174-183, June 2004.

[13] L. Alchaal, V. Roca, and M. Habert, “Managing

and Securing Web Services with VPNs,” Proc. IEEE

Int’l Conf. Web Services, pp. 236- 243, June 2004.

[14] H. Zhang, M. Savoie, S. Campbell, S. Figuerola,

G. von Bochmann, and B.S. Arnaud, “Service-

Oriented Virtual Private Networks for Grid

Applications,” Proc. IEEE Int’l Conf. Web Services,

pp. 944-951, July 2007.

[15] M. Burnside and A.D. Keromytis, “F3ildCrypt:

End-to-End Protection of Sensitive Information in

Web Services,” Proc. 12th Int’l Conf. Information

Security (ISC), pp. 491-506, 2009.

[16] I. Roy et al., “Airavat: Security and Privacy for

MapReduce,” Proc. Seventh USENIX Conf.

Networked Systems Design and Implementation

(NSDI), Apr. 2010.

