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Abstract — Among the Services provided by the cloud. 

Software as a Service (SaaS) is a software distribution 

model in which applications are hosted by a vendor or 

service provider and made available to customers over 

a network, typically the Interne. However, due to their 

sharing nature, SaaS clouds are vulnerable to 

malicious attacks SaaS cloud systems enable 

application service providers to deliver their 

applications via massive cloud computing 

infrastructures. In this paper, we present IntTest, a 

scalable and effective service integrity attestation 

framework for SaaS clouds. IntTest provides a novel 

integrated attestation graph analysis scheme that can 

provide stronger attacker pinpointing power than 

previous schemes. Moreover, IntTest can 

automatically enhance result quality by replacing bad 

results produced by malicious attackers with good 

results produced by benign service providers. We have 

implemented a prototype of the IntTest system and 

tested it on a production cloud computing 

infrastructure using IBM System S stream processing 

applications. Our experimental results show that 

IntTest can achieve higher attacker pinpointing 

accuracy than existing approaches. IntTest does not 

require any special hardware or secure kernel support 

and imposes little performance impact to the 

application, which makes it practical for large-scale 

cloud systems. 
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I. INTRODUCTION 

The concept of cloud computing enables you to run 

computer applications over the Internet, eliminating 

the need to buy, install or manage your own servers. 

You can simply run your company's IT operations 

with just a browser and an Internet connection .Cloud 

computing has emerged as a cost-effective resource 

leasing paradigm, which obviates the need for users 

maintain complex physical computing infrastructures 

by themselves. Software-as-a-service (SaaS) clouds 

(e.g., Amazon Web Service (AWS) [1] and Google 

AppEngine [2]) build upon the concepts of software as 

a service [3] and service-oriented architecture (SOA) 

[4], [5], which enable application service providers 

(ASPs) to deliver their applications via the massive 

cloud computing infrastructure. In particular, our work 

focuses on data stream processing services [6], [7], [8] 

that are considered to be one class of killer 

applications for clouds with many real-world 

applications in security surveillance, scientific 

computing, and business intelligence. However, cloud 

computing infrastructures are often shared by ASPs 

from different security domains, which make them 

vulnerable to malicious attacks [9], [10]. For example, 

attackers can pretend to be legitimate service 

providers to provide fake service components, and the 

service components provided by benign service 

providers may include security holes that can be 

exploited by attackers. Our work focuses on service 

integrity attacks that cause the user to receive 

untruthful data processing results, illustrated by Fig. 1. 

Although confidentiality and privacy protection 

problems have been extensively studied by previous 

research [11], [12], [13], [14], [15], [16], the service 

integrity attestation problem has not been properly 

addressed. Moreover, service integrity is the most 

prevalent problem, which needs to be addressed no 

matter whether public or private data are processed by 

the cloud system. Although previous work has 

provided various software integrity attestation 

solutions [9], [10], [11],[12], those techniques often 

require special trusted hardware or secure kernel 

support, which makes them difficult to be deployed on 

large-scale cloud computing infrastructures. 

Traditional Byzantine fault tolerance (BFT) 

techniques [14], [15] can detect arbitrary misbehaviors 

using full-time majority voting (FTMV) over all 

replicas, which however incur high overhead to the 

cloud system.  

 

In this paper, we present IntTest, a new integrated 

service integrity attestation framework for multitenant 

cloud systems. IntTest provides a practical service 

integrity attestation scheme that does not assume 
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trusted entities on third-party service provisioning 

sites or require application modifications. IntTest 

builds upon our previous work RunTest [16] and 

AdapTest [7] but can provide stronger malicious 

attacker pinpointing power than RunTest and 

AdapTest. Specifically, RunText and AdapTest as 

well as traditional majority voting schemes need to 

assume that benign service providers take majority in 

every service function. However, in large-scale 

multitenant cloud systems, multiple malicious 

attackers may launch colluding attacks on certain 

targeted service functions to invalidate the 

assumption. To address the challenge, IntTest takes 

aholistic approach by systematically examining both 

consistency and inconsistency relationships among 

different service providers within the entire cloud 

system.  

 
 

Fig. 1. Service integrity attack in cloud-based data 

processing. Si 

denotes different service component and VM 

denotes virtual machines 

 

The per-function consistency raph analysis can limit 

the scope of damage caused by colluding attackers, 

while the global inconsistency graph analysis can 

effectively expose those attackers that try to 

compromise many service functions. Hence, IntTest 

can still pinpoint malicious attackers even if they 

become majority for some service functions. By 

taking an integrated approach, IntTest can not only 

pinpoint attackers more efficiently but also can 

suppress aggressive attackers and limit the scope of 

the damage caused by colluding attacks. Moreover, 

IntTest provides result auto correction that can 

automatically replace corrupted data processing results 

produced by malicious attackers with good results 

produced by benign service providers. Specifically, 

this paper makes the following contributions: 

 

 We provide a scalable and efficient distributed 

service integrity attestation framework for large 

scale cloud computing infrastructures. 

 

 We present a novel integrated service integrity 

attestation scheme that can achieve higher 

pinpointing accuracy than previous techniques.  

 

 We describe a result auto correction technique 

that can automatically correct the corrupted 

results produced by malicious attackers. 

 

 We conduct both analytical study and 

experimental evaluation to quantify the accuracy 

and overhead of the integrated service integrity 

attestation scheme. 

 

We have implemented a prototype of the IntTest 

system and tested it on NCSU’s virtual computing lab 

(VCL) [8], a production cloud computing 

infrastructure that operates in a similar way as the 

Amazon elastic compute cloud (EC2) [9]. The 

benchmark applications we use to evaluate IntTest are 

distributed data stream processing services provided 

by the IBM System S stream processing platform [8], 

[3], an industry strength data stream processing 

system. Experimental results show that IntTest can 

achieve more accurate pinpointing than existing 

schemes (e.g., RunTest, AdapTest, and full-time 

majority voting) under strategically colluding attacks. 

IntTest is scalable and can reduce the attestation 

overhead by more than one order of magnitude 

compared to thetraditional full-time majority voting 

scheme. 

II. PROBLEM STATEMENT 

 

Given a SaaS cloud system, the goal of IntTest is to 

pinpoint any malicious service provider that offers an 

untruthful service function. IntTest treats all service 

components as black boxes, which does not require 

any special hardware or secure kernel support on the 
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cloud platform. We now describe our attack model 

and our key assumptions as follows:   

 

Attack model. A malicious attacker can pretend to be 

a legitimate service provider or take control of 

vulnerable service providers to provide untruthful 

service functions. Malicious attackers can be stealthy, 

which means they can misbehave on a selective subset 

of input data or service functions while pretending to 

be benign service providers on other input data or 

functions. The stealthy behavior makes detection more 

challenging due to the following reasons:  

 

 The detection scheme needs to be hidden from the 

attackers to prevent attackers from gaining 

knowledge on the set of data processing results 

that will be verified and therefore easily escaping 

detection; and  

 

 The detection scheme needs to be scalable while 

being able to capture misbehavior that may be 

both unpredictable and occasional. 

 

In a large-scale cloud system, we need to consider 

colluding attack scenarios where multiple malicious 

attackers collude or multiple service sites are 

simultaneously compromised and controlled by a 

single malicious attacker. Attackers could sporadically 

collude, which means an attacker can collude with an 

arbitrary subset of its colluders at any time. We 

assume that malicious nodes have no knowledge of 

other nodes except those they interact with directly. 

However, attackers can communicate with their 

colluders in an arbitrary way. Attackers can also 

change their attacking and colluding strategies 

arbitrarily.  Assumptions we first assume that the total 

number of malicious service components is less than 

the total number of benign ones in the entire cloud 

system. Without this assumption, it would be very 

hard, if not totally impossible, for any attack detection 

scheme to work when comparable ground truth 

processing results are not available. 

 

Fig.2. Replay-based consistency check. 

 

However, different from RunTest, AdapTest, or any 

previous majority voting schemes, IntTest does not 

assume benign service components have to be the 

majority for every service function, which will greatly 

enhance our pinpointing power and limit the scope of 

service functions that can be compromised by 

malicious attackers. Second, we assume that the data 

processing services are input-deterministic, that is, 

given the same input, a benign service component 

always produces the same or similar output (based on 

a user-defined similarity function). Many data stream 

processing functions fall into this category [8]. We can 

also easily extend our attestation framework to support 

stateful data processing services [8], which however is 

outside the scope of this paper. Third, we also assume 

that the result inconsistency caused by hardware or 

software faults can be marked by fault detection 

schemes [3] and are excluded from our malicious 

attack detection.  

III. RELATED WORK 

 

To detect service integrity attack and pinpoint 

malicious service providers, our algorithm relies on 

replay-based consistency check to derive the 

consistency/inconsistency relationships between 

service providers. For example, Fig. 2 shows the 

consistency check scheme for attesting three service 

provider’s p1, p 2, and p 3 that offer the same service 

function f. The portal sends the original input data d1 

to p1 and gets back the result f(d1). Next, the portal 

sends d0, a duplicate of d1 to p3 and gets back the 

result f(d0). 

 

The portal then compares f(d1) and f(d0)  to see 

whether p1 and p3 are consistent. The intuition behind 

our approach is that if two service providers disagree 

with each other on the processing result of the same 

input, at least one of them should be malicious. Note 

that we do not send an input data item and its 

duplicates (i.e., attestation data) concurrently. Instead, 

we replay the attestation data on different service 

providers after receiving the processing result of the 

original data. Thus, the malicious attackers cannot 

avoid the risk of being detected when they produce 

false results on the original data. Although the replay 

scheme may cause delay in a single tuple processing, 

we can overlap the attestation and normal processing 

of consecutive tuples in the data stream to hide the 

attestation delay from the user. If two service 

providers always give consistent output results on all 

input data, there exists consistency relationship 

between them. Otherwise, if they give different 

outputs on at least one input data, there is 

inconsistency relationship between them. We do not 

limit the consistency relationship to equality function 

since two benign service providers may produce 
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similar but not exactly the same results. For example, 

the credit scores for the same person may vary by a 

small difference when obtained from different credit 

bureaus. We allow the user to define a distance 

function to quantify the biggest tolerable result 

difference. 

 

Definition 1. For two output results, r1 and r2, which 

come from two functionally equivalent service 

providers, respectively, result consistency is defined 

as either r1 = r2, or the distance between r1 and r2 

according to user-defined distance function D(r1,r2) 

falls within a threshold ɗ. 

 

For scalability, we propose randomized probabilistic 

attestation, an attestation technique that randomly 

replays a subset of input data for attestation. For 

composite data-flow processing services consisting of 

multiple service hops, each service hop is composed 

of a set of unction ally equivalent service providers. 

Specifically, for an upcoming tuple di, the portal may 

decide to perform integrity attestation with probability 

pu. If the portal decides to perform attestation on di, 

the portal first sends di to a pre-defined service path p1 

‒–›p2 • • • • –––› pl   providing functions f1 ‒–› f2• • • •–

–› fl. After receiving the processing result for di, the 

portal replays the duplicates of di, on alternative 

service path(s) such as ṕ1‒–› ṕ2• • • • • ––› ṕj providing 

functions fj as ṕj. The portal may perform data replay 

on multiple service providers to perform concurrent 

attestation. 

 

Fig. 3. Attestation graphs. 

 

With replay-based consistency check, we can test 

functionally equivalent service providers and obtain 

their consistency and inconsistency relationships. 

Fig.3. Attestation graphs both the we employ 

consistency graph and inconsistency graph to 

aggregate pairwise attestation results for further 

analysis. The graphs reflect the 

consistency/inconsistency relationships across 

multiple service providers over a period of time. 

Before introducing the attestation graphs, we first 

define consistency links and inconsistency links. 

 

Definition 2. A consistency link exists between two 

service providers who always give consistent output 

for the same input data during attestation. An 

inconsistency link exists between two service 

providers who give at least one inconsistent output for 

the same input data during attestation. 

We then construct consistency graphs for each 

function to capture consistency relationships among 

the service providers provisioning the same function. 

Fig 3 (a) shows the consistency graphs for two 

functions. Note that two service providers that are 

consistent for one function are not necessarily 

consistent for another function. This is the reason why 

we confine consistency graphs within individual 

functions.  

 

Definition 3. A per-function consistency graph is an 

undirected graph, with all the attested service 

providers that provide the same service function as the 

vertices and consistency links as the edges. 

We use a global inconsistency graph to capture 

inconsistency relationships among all service 

providers. Two service providers are said to be 

inconsistent as long as they disagree in any function. 

Thus, we can derive more comprehensive 

inconsistency relationships by integrating 

inconsistency links across functions. Fig. 3(b) shows 

an example of the global inconsistency graph. Note 

that service provider p5 provides both functions f1 and 

f2. In the inconsistency graph, there is a single node 

p5 with its links reflecting inconsistency relationships 

in both functions f1 and f2. 

 

Definition 4. The global inconsistency graph is an 

undirected graph, with all the attested service 

providers in the system as the vertex set and 

inconsistency links as the edges. The portal node is 

responsible for constructing and maintaining both per-

function consistency graphs and the global 

inconsistency graph. To generate these graphs, the 

portal maintains counters for the number of 

consistency results and counters for the total number 

of attestation data between each pair of service 

providers.  
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IV. RESULTS AND ANALYSIS 

 

We first investigate the accuracy of our scheme in 

pinpointing malicious service providers. Fig. 4(a) 

compares our scheme with the other alternative 

schemes (i.e., FTMV, PTMV, and RunTest) when 

malicious service providers aggressively attack 

different number of service functions. Inthis set of 

experiments, we have 10 service functions and 30 

service providers. The number of service providers in 

each service function randomly ranges in [1, 8].     

 

 
 

Fig 4.Malicious attackers pinpointing accuracy 

comparison with 20 percent service providers being 

malicious. 

 

Each benign service provider provides two randomly 

selected service functions. The data rate of the input 

stream is 300 tuples per second. We set 20 percent of 

service providers as malicious. After the portal 

receives the processing result of a new data tuple, it 

randomly decides whether to perform data attestation. 

Each tuple has 0.2 probability of getting attested (i.e., 

attestation probability Pu ¼ 0:2), and two attestation 

data replicas are used (i.e., number of total data copies 

including the original data r ¼ 3). Each experiment is 

repeated three times. We report the average detection 

rate and false alarm rate achieved by different 

schemes. Note that RunTest can achieve the same 

detection accuracy results as the majority voting based 

schemes after the randomized probabilistic attestation 

covers all attested service providers and discovers the 

majority clique [6]. In contrast, IntTest 

comprehensively examines both perfection 

consistency graphs and the global inconsistency graph 

to make the final pinpointing decision. We observe 

that IntTest can achieve much higher detection rate 

and lower false alarm rate than other alternatives. 

Moreover, IntTest can achieve better detection 

accuracy when malicious service providers attack 

more functions. We also observe that when malicious 

service providers attack aggressively, our scheme can 

detect them even though they attack a low percentage 

of service functions Fig. 4(b) shows the malicious 

service provider detection accuracy results under the 

conservative attack scenarios. All the other experiment 

parameters are kept the same as the previous 

experiments. The results show that IntTest can 

consistently achieve higher detection rate and lower 

false alarm rate than the other alternatives. In the 

conservative attack scenario, as shown by fig. 4(b), the 

false alarm rate of IntTest first increases when a small 

percentage of service functions are attacked and then 

drops to zero quickly with more service functions are 

attacked. This is because when attackers only attack a 

few service functions where they can take majority; 

they can hide themselves from our detection scheme 

while tricking our algorithm into labeling benign 

service providers as malicious. However, if they attack 

more service functions, they can be detected since 

they incur more inconsistency links with benign 

service providers in the global inconsistency graph. 

Note that majority voting-based schemes can also 

detect malicious attackers if attackers fail to take 

majority in the attacked service function. However, 

majority voting-based schemes have high false alarms 

since attacks can always trick the schemes to label 

benign service providers as malicious as long as 

attackers can take majority in each individual service 

function 

V. CONCLUSION 

In this paper, we have presented the design and 

implementation of IntTest, a novel integrated service 

integrity attestation framework for multitenant 

software-as-a-service cloud systems. IntTest employs 

randomized replay-based consistency check to verify 

the integrity of distributed service components without 

imposing high overhead to the cloud infrastructure. 

IntTest performs integrated analysis over both 

consistency and inconsistency attestation graphs to 

pinpoint colluding attackers more efficiently than 

existing techniques. Furthermore, IntTest provides 

result autocorrect ion to automatically correct 

compromised results to improve the result quality. We 

have implemented IntTest and tested it on a 

commercial data stream processing platform running 

inside a production virtualized cloud computing 

infrastructure. Our experimental results show that 

IntTest can achieve higher pinpointing accuracy than 

existing alternative schemes. IntTest is lightweight, 

which imposes low-performance impact to the data 
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processing services running inside the cloud 

computing infrastructure. 
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